Files
video-v1/vav2/docs/working/Vav2Player_Stutter_Fix_Design.md

628 lines
19 KiB
Markdown
Raw Normal View History

2025-10-09 19:21:14 +09:00
# Vav2Player Stutter Fix Design
**Date**: 2025-10-08
**Status**: In Progress
**Priority**: Critical
## Problem Statement
Vav2Player exhibits persistent stuttering ("통통 튀는 현상") during 30fps AV1 video playback despite previous B-frame reordering fixes. Analysis reveals three critical synchronization issues in the NVDEC → Triple Buffering → Staging Texture → Renderer pipeline.
## Root Cause Analysis
### Problem 1: GPU Copy Race Condition
**Issue**: Asynchronous GPU copy to staging texture without completion wait
**Current Flow**:
```
NVDEC Decode → Backend Texture (m_rgbaTextures[0,1,2])
GPU CopyResource (async, no wait)
Staging Texture (m_stagingTexture)
Renderer reads (60Hz Present)
```
**Race Condition**:
- `FrameProcessor.cpp:109` calls `CopyToStagingTexture()` and returns immediately
- GPU copy executes asynchronously on command queue
- Next frame may overwrite staging texture before GPU copy completes
- Renderer (`RGBASurfaceBackend.cpp:200-206`) reads staging texture while copy in-flight
**Evidence**:
```cpp
// FrameProcessor.cpp:106-114
if (result == VAVCORE_SUCCESS) {
auto backend = m_renderer->GetRGBASurfaceBackend();
if (backend) {
HRESULT hr = backend->CopyToStagingTexture(rgbaTexture);
// ❌ NO WAIT HERE - returns immediately
// ❌ GPU copy may not be complete
}
}
```
**Symptoms**:
- Flickering/tearing during playback
- Inconsistent frame presentation
- Visual artifacts (partial frame updates)
---
### Problem 2: NVDEC Decode Completion Not Verified
**Issue**: Polling thread exists but decode completion not enforced in DecodeToSurface
**Current Implementation**:
- `NVDECAV1Decoder.cpp` has `PollingThreadFunc()` for `cuvidGetDecodeStatus()`
- `DecodeToSurface()` only waits for FIFO ordering (submission queue)
- **No wait for `slot.is_ready` flag** (set by polling thread)
**Evidence**:
```cpp
// NVDECAV1Decoder.cpp - DecodeToSurface (approximate line ~1400)
// FIFO wait only
while (m_returnCounter.load() != submission_id) {
std::unique_lock<std::mutex> fifo_lock(m_fifoWaitMutex);
m_fifoWaitCV.wait_for(fifo_lock, std::chrono::milliseconds(100), ...);
}
// ❌ MISSING: Wait for slot.is_ready
// ❌ MISSING: cuvidGetDecodeStatus() completion check
// Function returns immediately after FIFO order satisfied
```
**Impact**:
- Backend texture may contain incomplete decoded data
- GPU copy operates on partial decode results
- Frame quality inconsistency
---
### Problem 3: Playback Timing Irregularity
**Issue**: Sleep-first strategy causes cumulative timing jitter
**Current Implementation** (`PlaybackController.cpp:354-371`):
```cpp
// Sleep FIRST (fixed duration)
std::this_thread::sleep_for(targetIntervalMs);
// Then invoke callback (variable duration)
m_frameReadyCallback(); // Blocking: 6-20ms depending on frame type
```
**Timing Analysis**:
| Frame Type | Sleep | Callback | Total | Target | Error |
|------------|-------|----------|-------|--------|-------|
| Display-only | 33ms | 6ms | 39ms | 33.33ms | +5.67ms |
| Normal decode | 33ms | 20ms | 53ms | 33.33ms | +19.67ms |
**B-frame Pattern** (every 3rd frame is Display-only):
```
Frame 0: Normal (53ms total) → 19.67ms late
Frame 1: Normal (53ms total) → 19.67ms late
Frame 2: Display (39ms total) → 5.67ms late
Frame 3: Normal (53ms total) → 19.67ms late
...
```
**Compounding Effects**:
- Combined with VSync Present(1,0): frames shown for 1 or 2 VSync cycles (16.66ms or 33.33ms)
- Irregular display duration causes perceived "jumping" motion
- User perception: "통통 튀는 현상" (bouncy/stuttering playback)
---
## Solution Design
### Solution 1: GPU Copy Completion Synchronization
**Objective**: Ensure GPU copy completes before proceeding to rendering
**Implementation**:
#### 1.1 Add GPU Fence to RGBASurfaceBackend
**File**: `RGBASurfaceBackend.h`
```cpp
class RGBASurfaceBackend : public IVideoBackend {
public:
// ... existing methods ...
// New method: Wait for GPU copy to complete
HRESULT WaitForCopyCompletion();
private:
// ... existing members ...
// GPU synchronization for copy operations
ComPtr<ID3D12Fence> m_copyFence;
UINT64 m_copyFenceValue = 0;
HANDLE m_copyFenceEvent = nullptr;
};
```
#### 1.2 Create Fence in Initialize
**File**: `RGBASurfaceBackend.cpp` (in `Initialize()` method)
```cpp
// Create fence for GPU copy synchronization
HRESULT hr = m_device->CreateFence(
0,
D3D12_FENCE_FLAG_NONE,
IID_PPV_ARGS(&m_copyFence)
);
if (FAILED(hr)) {
return hr;
}
// Create fence event
m_copyFenceEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr);
if (m_copyFenceEvent == nullptr) {
return HRESULT_FROM_WIN32(GetLastError());
}
```
#### 1.3 Signal Fence After Copy Submission
**File**: `RGBASurfaceBackend.cpp` (in `CopyToStagingTexture()`)
```cpp
HRESULT RGBASurfaceBackend::CopyToStagingTexture(ID3D12Resource* sourceTexture) {
// ... existing copy commands ...
m_copyCommandList->Close();
ID3D12CommandList* commandLists[] = { m_copyCommandList.Get() };
m_commandQueue->ExecuteCommandLists(1, commandLists);
// Signal fence after copy submission
m_copyFenceValue++;
HRESULT hr = m_commandQueue->Signal(m_copyFence.Get(), m_copyFenceValue);
if (FAILED(hr)) {
LOGF_ERROR("[CopyToStagingTexture] Failed to signal fence: 0x%08X", hr);
return hr;
}
LOGF_DEBUG("[CopyToStagingTexture] GPU copy submitted (fence value: %llu)",
m_copyFenceValue);
return S_OK;
}
```
#### 1.4 Implement Wait Method
**File**: `RGBASurfaceBackend.cpp` (new method)
```cpp
HRESULT RGBASurfaceBackend::WaitForCopyCompletion() {
// Check if copy already completed
if (m_copyFence->GetCompletedValue() >= m_copyFenceValue) {
return S_OK; // Already complete
}
// Wait for GPU copy to complete
HRESULT hr = m_copyFence->SetEventOnCompletion(
m_copyFenceValue,
m_copyFenceEvent
);
if (FAILED(hr)) {
LOGF_ERROR("[WaitForCopyCompletion] SetEventOnCompletion failed: 0x%08X", hr);
return hr;
}
DWORD waitResult = WaitForSingleObject(m_copyFenceEvent, 5000); // 5 second timeout
if (waitResult != WAIT_OBJECT_0) {
LOGF_ERROR("[WaitForCopyCompletion] Wait failed or timed out: %lu", waitResult);
return E_FAIL;
}
LOGF_DEBUG("[WaitForCopyCompletion] GPU copy completed (fence value: %llu)",
m_copyFenceValue);
return S_OK;
}
```
#### 1.5 Call Wait in FrameProcessor
**File**: `FrameProcessor.cpp` (in `ProcessFrame()`)
```cpp
// After successful decode, copy to staging texture for safe rendering
if (result == VAVCORE_SUCCESS) {
auto backend = m_renderer->GetRGBASurfaceBackend();
if (backend) {
HRESULT hr = backend->CopyToStagingTexture(rgbaTexture);
if (FAILED(hr)) {
LOGF_ERROR("[FrameProcessor] Failed to copy to staging texture: 0x%08X", hr);
} else {
// Wait for GPU copy to complete before proceeding
hr = backend->WaitForCopyCompletion();
if (FAILED(hr)) {
LOGF_ERROR("[FrameProcessor] Failed to wait for copy completion: 0x%08X", hr);
} else {
LOGF_DEBUG("[FrameProcessor] GPU copy completed, staging texture ready");
}
}
}
}
```
#### 1.6 Cleanup in Shutdown
**File**: `RGBASurfaceBackend.cpp` (in `Shutdown()`)
```cpp
// Close fence event handle
if (m_copyFenceEvent != nullptr) {
CloseHandle(m_copyFenceEvent);
m_copyFenceEvent = nullptr;
}
// Release fence
m_copyFence.Reset();
```
---
### Solution 2: NVDEC Decode Completion Wait
**Objective**: Ensure NVDEC hardware decoding completes before accessing decoded surface
**Implementation**:
#### 2.1 Find Decode Slot in DecodeToSurface
**File**: `NVDECAV1Decoder.cpp` (in `DecodeToSurface()`, after FIFO wait)
```cpp
// After FIFO ordering wait, find the actual slot used by this submission
int slot_idx = -1;
{
std::lock_guard<std::mutex> lock(m_submissionMutex);
// Search for slot matching this submission_id
for (size_t i = 0; i < RING_BUFFER_SIZE; i++) {
if (m_ringBuffer[i].submission_id == submission_id &&
m_ringBuffer[i].in_use.load()) {
slot_idx = static_cast<int>(i);
break;
}
}
}
if (slot_idx < 0) {
LOGF_ERROR("[DecodeToSurface] Failed to find decode slot for submission_id=%llu",
submission_id);
return VAVCORE_ERROR_DECODE_FAILED;
}
```
#### 2.2 Wait for Decode Completion
**File**: `NVDECAV1Decoder.cpp` (in `DecodeToSurface()`, after finding slot)
```cpp
DecodeSlot& slot = m_ringBuffer[slot_idx];
// Wait for NVDEC decode to complete (signaled by polling thread)
{
std::unique_lock<std::mutex> slot_lock(slot.slot_mutex);
bool decode_ready = slot.frame_ready.wait_for(
slot_lock,
std::chrono::milliseconds(500), // 500ms timeout
[&slot]() {
return slot.is_ready.load();
}
);
if (!decode_ready) {
LOGF_ERROR("[DecodeToSurface] Decode timeout for slot %d (submission_id=%llu)",
slot_idx, submission_id);
// Mark slot as failed
slot.decoding_failed.store(true);
slot.in_use.store(false);
return VAVCORE_ERROR_DECODE_TIMEOUT;
}
// Check if decoding failed
if (slot.decoding_failed.load()) {
LOGF_ERROR("[DecodeToSurface] Decode failed for slot %d (submission_id=%llu)",
slot_idx, submission_id);
slot.in_use.store(false);
return VAVCORE_ERROR_DECODE_FAILED;
}
}
LOGF_DEBUG("[DecodeToSurface] Decode completed for slot %d (submission_id=%llu)",
slot_idx, submission_id);
```
#### 2.3 Update Polling Thread to Signal Readiness
**File**: `NVDECAV1Decoder.cpp` (in `PollingThreadFunc()`)
**Ensure polling thread properly signals `slot.is_ready` when `cuvidGetDecodeStatus()` returns success**
```cpp
void NVDECAV1Decoder::PollingThreadFunc() {
while (m_pollingRunning.load()) {
// Poll all active slots
for (size_t i = 0; i < RING_BUFFER_SIZE; i++) {
DecodeSlot& slot = m_ringBuffer[i];
if (!slot.in_use.load() || slot.is_ready.load()) {
continue; // Skip inactive or already ready slots
}
int pic_idx = slot.picture_index;
if (pic_idx < 0) {
continue; // No picture assigned yet
}
// Check decode status
CUresult result = cuvidGetDecodeStatus(m_decoder, pic_idx);
if (result == CUDA_SUCCESS) {
// Decode complete
{
std::lock_guard<std::mutex> lock(slot.slot_mutex);
slot.is_ready.store(true);
}
slot.frame_ready.notify_all();
LOGF_DEBUG("[PollingThread] Slot %zu ready (pic_idx=%d)", i, pic_idx);
} else if (result == CUDA_ERROR_NOT_READY) {
// Still decoding, continue polling
} else {
// Decode error
LOGF_ERROR("[PollingThread] Decode error for slot %zu (pic_idx=%d): %d",
i, pic_idx, result);
{
std::lock_guard<std::mutex> lock(slot.slot_mutex);
slot.decoding_failed.store(true);
slot.is_ready.store(true); // Signal to wake up waiter
}
slot.frame_ready.notify_all();
}
}
// Poll interval: 1ms for responsiveness
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
LOGF_DEBUG("[PollingThread] Polling thread exiting");
}
```
---
### Solution 3: Playback Timing Strategy Redesign
**Objective**: Maintain fixed 33.33ms frame intervals regardless of decode time variation
**Implementation**:
#### 3.1 Callback-First with Absolute Target Tracking
**File**: `PlaybackController.cpp` (in `TimingThreadLoop()`)
```cpp
void PlaybackController::TimingThreadLoop()
{
// Set Windows timer resolution to 1ms for accurate sleep
timeBeginPeriod(1);
LOGF_INFO("[PlaybackController] Set Windows timer resolution to 1ms");
double baseIntervalMs = 1000.0 / m_frameRate;
auto startTime = std::chrono::high_resolution_clock::now();
auto nextFrameTarget = startTime;
LOGF_INFO("[PlaybackController] Timing thread loop started (target: %.2f fps, %.2f ms per frame)",
m_frameRate, baseIntervalMs);
while (!m_shouldStopTiming && m_isPlaying) {
auto frameStart = std::chrono::high_resolution_clock::now();
// Apply playback speed
double speed = m_playbackSpeed.load();
double targetIntervalMs = baseIntervalMs / speed;
// Invoke callback FIRST (blocking decode + render)
// This allows decode time to vary (6-20ms) without affecting frame interval
auto callbackStart = std::chrono::high_resolution_clock::now();
if (m_frameReadyCallback) {
m_frameReadyCallback();
}
auto callbackEnd = std::chrono::high_resolution_clock::now();
double callbackTime = std::chrono::duration<double, std::milli>(callbackEnd - callbackStart).count();
// Calculate next frame target (fixed interval from start time)
nextFrameTarget += std::chrono::microseconds(static_cast<long long>(targetIntervalMs * 1000));
// Sleep until next frame target
auto now = std::chrono::high_resolution_clock::now();
auto sleepDuration = nextFrameTarget - now;
if (sleepDuration.count() > 0) {
// Sleep for remaining time
std::this_thread::sleep_until(nextFrameTarget);
double sleepTime = std::chrono::duration<double, std::milli>(sleepDuration).count();
LOGF_DEBUG("[PlaybackController] Frame %llu timing: callback=%.2fms, sleep=%.2fms",
m_currentFrame, callbackTime, sleepTime);
} else {
// Missed target - log warning
double missedBy = std::chrono::duration<double, std::milli>(-sleepDuration).count();
LOGF_WARNING("[PlaybackController] Frame %llu MISSED target by %.2fms (callback took %.2fms)",
m_currentFrame, missedBy, callbackTime);
// Reset target to current time to avoid cumulative drift
nextFrameTarget = now;
}
// Update current time
m_currentFrame++;
m_currentTime = m_currentFrame / m_frameRate;
}
// Restore Windows timer resolution
timeEndPeriod(1);
LOGF_INFO("[PlaybackController] Timing thread loop exited, timer resolution restored");
}
```
#### 3.2 Timing Characteristics
**New Timing Behavior**:
```
Frame 0 (Normal, 20ms decode):
[Callback: 20ms] [Sleep: 13.33ms] = 33.33ms total ✓
Frame 1 (Normal, 20ms decode):
[Callback: 20ms] [Sleep: 13.33ms] = 33.33ms total ✓
Frame 2 (Display-only, 6ms decode):
[Callback: 6ms] [Sleep: 27.33ms] = 33.33ms total ✓
Frame 3 (Normal, 20ms decode):
[Callback: 20ms] [Sleep: 13.33ms] = 33.33ms total ✓
```
**Benefits**:
- ✅ Fixed 33.33ms frame interval maintained
- ✅ Decode time variation absorbed by sleep duration
- ✅ No cumulative timing drift
- ✅ Consistent VSync alignment (every 2 frames = 33.33ms)
---
## Implementation Plan
### Phase 1: Solution 1 (GPU Copy Sync)
1. Add fence/event members to `RGBASurfaceBackend.h`
2. Create fence in `Initialize()`, cleanup in `Shutdown()`
3. Implement `WaitForCopyCompletion()`
4. Signal fence in `CopyToStagingTexture()`
5. Call wait in `FrameProcessor::ProcessFrame()`
6. **Build and test**: Verify staging texture stability
### Phase 2: Solution 2 (NVDEC Decode Sync)
1. Update `DecodeToSurface()` to find slot after FIFO wait
2. Add decode completion wait with timeout
3. Update `PollingThreadFunc()` to properly signal readiness
4. Add error handling for decode failures/timeouts
5. **Build and test**: Verify decode completion before surface access
### Phase 3: Solution 3 (Playback Timing)
1. Redesign `TimingThreadLoop()` with callback-first strategy
2. Implement absolute frame target tracking
3. Add missed frame detection and recovery
4. **Build and test**: Verify consistent 33.33ms frame intervals
### Phase 4: Integration Testing
1. Run full playback test with all 3 fixes
2. Measure frame timing consistency
3. Verify stutter elimination
4. Performance profiling (GPU/CPU utilization)
---
## Expected Results
### Before Fix
- GPU copy race: Flickering/tearing artifacts
- NVDEC not ready: Partial decoded frames
- Timing irregular: 33-53ms frame intervals (39% variation)
- User perception: **Severe stuttering** ("통통 튀는 현상")
### After Fix
- GPU copy complete: Stable staging texture
- NVDEC verified: Complete decoded frames
- Timing fixed: Consistent 33.33ms intervals (±1ms tolerance)
- User perception: **Smooth 30fps playback**
---
## Performance Impact
### CPU Impact
- GPU fence wait: ~0.1ms per frame (minimal, GPU-bound)
- NVDEC status poll: ~1ms per frame (already running in background)
- Timing redesign: No additional CPU overhead
### GPU Impact
- Fence overhead: Negligible (native GPU operation)
- No additional GPU work introduced
### Latency Impact
- Added synchronization: +1-2ms per frame
- **Trade-off**: Slightly higher latency for stability and smoothness
- Still well within 30fps budget (33.33ms)
---
## Risks and Mitigations
### Risk 1: Fence Wait Timeout
**Mitigation**: 5-second timeout with error logging, graceful fallback
### Risk 2: NVDEC Decode Timeout
**Mitigation**: 500ms timeout, mark slot as failed, continue with next frame
### Risk 3: Callback Takes >33ms
**Mitigation**: Detect missed frames, log warning, reset timing target to prevent drift
---
## Testing Strategy
### Unit Tests
- GPU fence creation/signaling/waiting
- NVDEC decode status polling accuracy
- Frame timing calculation correctness
### Integration Tests
- Full 30fps playback for 60 seconds
- Frame interval histogram (should cluster at 33.33ms ±1ms)
- Visual inspection for stutter/artifacts
### Performance Tests
- CPU utilization during playback
- GPU utilization during playback
- Memory usage over extended playback
---
## Success Criteria
1. **No GPU copy race**: Staging texture content stable across frames
2. **NVDEC decode verified**: All frames fully decoded before access
3. **Frame timing consistent**: 95% of frames within 33.33ms ±2ms
4. **Stutter eliminated**: No visible "jumping" or irregular motion
5. **Performance acceptable**: <5% CPU overhead, <2ms added latency
---
## References
- Previous fix: `NVDEC_Frame_Reordering_Fix_Design.md`
- CUDA Documentation: `cuvidGetDecodeStatus()`
- D3D12 Documentation: `ID3D12Fence`, `SetEventOnCompletion()`
- Windows Multimedia Timer: `timeBeginPeriod()`
---
**Document Status**: Design Complete, Ready for Implementation
**Next Step**: Implement Solution 1 (GPU Copy Sync)